Abstract
The interest in bicycling and its determining factors is growing within the public health, transportation and geography communities. Ownership is one factor affecting bicycle usage, but work is still ongoing to not only quantify its effects but also to understand patterns in its growth and influence. In recent work, we mined and discovered patterns in global bicycle ownership that showed the existence of four characteristic country groups and their trends. Building on these results, we show in this paper that the ownership dataset can be modeled as a network. First, we observe mixing tendencies that indicate neighboring countries are more likely to be in the same ownership group and we map the likelihoods for cross-group mixings. Further, we define the strength of connections between countries by their proximity in ownership levels. We then determine the weighted degree assortative coefficient for the network and for each group relative to the network. We find that while the weighted degree assortativity of the ownership network is statistically insignificant, the highest and lowest ownership groups exhibit disassortative behavior with respect to the entire network. The second and third ranked groups, however, are strongly assortative. Our model serves as a step toward further work in studying the relationship between proximity and bicycle ownership among nations and unearthing possible patterns of influence. Considering further developments, this work can inform policy-relevant recommendations toward regional planning. This effort also contributes to expanding research in assortativity analyses, especially in weighted networks.